789 research outputs found

    Infinitely Many Homoclinic Orbits for 2 n

    Get PDF
    By establishing a new proper variational framework and using the critical point theory, we establish some new existence criteria to guarantee that the 2nth-order nonlinear difference equation containing both advance and retardation with p-Laplacian Δn(r(t−n)φp(Δnu(t−1)))+q(t)φp(u(t))=f(t,u(t+n),…,u(t),…,u(t−n)), n∈ℤ(3), t∈ℤ, has infinitely many homoclinic orbits, where φp(s) is p-Laplacian operator; φp(s)=|s|p−2s(1<p<∞)r, q, f are nonperiodic in t. Our conditions on the potential are rather relaxed, and some existing results in the literature are improved

    Geodesic Distance Function Learning via Heat Flow on Vector Fields

    Full text link
    Learning a distance function or metric on a given data manifold is of great importance in machine learning and pattern recognition. Many of the previous works first embed the manifold to Euclidean space and then learn the distance function. However, such a scheme might not faithfully preserve the distance function if the original manifold is not Euclidean. Note that the distance function on a manifold can always be well-defined. In this paper, we propose to learn the distance function directly on the manifold without embedding. We first provide a theoretical characterization of the distance function by its gradient field. Based on our theoretical analysis, we propose to first learn the gradient field of the distance function and then learn the distance function itself. Specifically, we set the gradient field of a local distance function as an initial vector field. Then we transport it to the whole manifold via heat flow on vector fields. Finally, the geodesic distance function can be obtained by requiring its gradient field to be close to the normalized vector field. Experimental results on both synthetic and real data demonstrate the effectiveness of our proposed algorithm

    Laplacian Regularized D-Optimal Design for Active Learning and Its Application to Image Retrieval

    Full text link

    Sneutrino DM in the NMSSM with inverse seesaw mechanism

    Full text link
    In supersymmetric theories like the Next-to-Minimal Supersymmetric Standard Model (NMSSM), the lightest neutralino with bino or singlino as its dominant component is customarily taken as dark matter (DM) candidate. Since light Higgsinos favored by naturalness can strength the couplings of the DM and thus enhance the DM-nucleon scattering rate, the tension between naturalness and DM direct detection results becomes more and more acute with the improved experimental sensitivity. In this work, we extend the NMSSM by inverse seesaw mechanism to generate neutrino mass, and show that in certain parameter space the lightest sneutrino may act as a viable DM candidate, i.e. it can annihilate by multi-channels to get correct relic density and meanwhile satisfy all experimental constraints. The most striking feature of the extension is that the DM-nucleon scattering rate can be naturally below its current experimental bounds regardless of the higgsino mass, and hence it alleviates the tension between naturalness and DM experiments. Other interesting features include that the Higgs phenomenology becomes much richer than that of the original NMSSM due to the relaxed constraints from DM physics and also due to the presence of extra neutrinos, and that the signatures of sparticles at colliders are quite different from those with neutralino as DM candidate.Comment: 33 page

    Image Compression by Learning to Minimize the Total Error

    Full text link
    • …
    corecore